The new era hypothesis of coastal degradation: G(s) elements—gallium, gadolinium, and germanium


SÖNMEZ V. Z., Akarsu C., SİVRİ N.

Environmental Geochemistry and Health, cilt.45, sa.11, ss.8803-8822, 2023 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 11
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s10653-023-01743-0
  • Dergi Adı: Environmental Geochemistry and Health
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Agricultural & Environmental Science Database, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, Environment Index, Geobase, INSPEC, MEDLINE, Pollution Abstracts, Veterinary Science Database
  • Sayfa Sayıları: ss.8803-8822
  • Anahtar Kelimeler: Gadolinium, Gallium, Germanium, Marine pollution, Potential ecological risk index, Toxicity coefficient
  • İstanbul Üniversitesi-Cerrahpaşa Adresli: Evet

Özet

Mining of precious metals contributes to environmental pollution, especially in coastal areas, and conventional treatment methods are not always effective in removing metal contaminants. Some of these metals, such as gadolinium, germanium and gallium, have caused increasing concern worldwide, as little is known about their current concentrations in the aquatic environment and their biological significance. Therefore, the aim of this study was to determine for the first time the variation of average G(s) concentrations (gallium, gadolinium and germanium) by month/season/site differences along the coast of Istanbul. The ecological risk index was calculated to assess the contamination of seawater and to serve as a diagnostic tool for the mitigation of water pollution. The average distribution G(s) in seawater was in the following order: Ga > Gd > Ge. In addition, the potential ecological risk in the sampling areas ranged from 68 to 1049. Of the three metals, Gd poses the highest ecological risk (grade III). In the spatial distribution of ecological risks, Gd mainly originated from discharges from wastewater treatment plants. Therefore, the sources of the anthropogenic Gd anomaly in wastewater should be identified, as this indicates the possibility of human exposure to potentially harmful anthropogenic compounds.