Estimations of Forest Stand Parameters in Open Forest Stand Using Point Cloud Data from Terrestrial Laser Scanning, Unmanned Aerial Vehicle and Aerial LiDAR Data


Creative Commons License

Arslan A. E., Inan M., Çelik M. F., Erten E.

European Journal of Forest Engineering, cilt.8, sa.2, ss.46-54, 2022 (Scopus, TRDizin) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 8 Sayı: 2
  • Basım Tarihi: 2022
  • Doi Numarası: 10.33904/ejfe.1174123
  • Dergi Adı: European Journal of Forest Engineering
  • Derginin Tarandığı İndeksler: Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.46-54
  • Anahtar Kelimeler: 3D remote sensing, ALS, diameter at breast height, forest tree height, TLS, UAV
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • İstanbul Üniversitesi-Cerrahpaşa Adresli: Evet

Özet

Two of the very basic forestry parameters, the Breast Height Diameter (DBH) and Tree Height (TH) are very effective when characterizing forest stands and individual trees. The traditional measurement process of these parameters takes a lot of time and consumes human power. On the other hand, 3D Point Cloud (PC) quickly provides a very detailed view of forestry parameters, because of the development of computer processing power and digital storage in recent years. PC data sources for forestry applications include Airborne LiDAR Systems (ALS), Terrestrial Laser Scanning (TLS) and most recently the Unmanned Air Vehicle (UAV). In this study, the PC datasets from these sources were used to study the feasibility of the DBH and TH values of a d development stage (i.e. DBH > 52 cm in mature stage) oak stand. The DBH and TH estimates are compared with the onsite measurements, which are considered to be fundamental truths, to their performance due to overall error statistics, as well as the cost of calculation and the difficulties in data collection. The results show that the computer data obtained by TLS has the best average square error (0.22 cm for DBH and 0,051 m for TH) compared to other computer data. The size of Pearson correlation between TLS-based and on-site-based measurements has reached 0.97 and 0.99 for DBH, respectively.